

## Moving together


. Answers for railway applications | 4

## 2

General characteristics $\mid 5$
3.

Railway applicable standards | 5

. Range of products 6Railway applications | 7. Technical features per model 8
> Instantaneous relays 9
> Instantaneous relays with coil overvoltage protection | 10
> Timer relays 11
> Latching relays 13
> Latching relays with coil overvoltage protection | 14
> Contractors 15
> Impulse relay | 17

## 7.

Breaking capacity | 19

8. Pick-up voltage/Release voltage-temperature charts22
> Instantaneous relays $\mid 23$
> Latching relays $\mid 23$
> Timer relays and impulse relay $\mid 24$
> Model selection | 25
> Dimensions of the relays $\mid 28$
> Retaining clips $\mid 29$
> Sockets, dimensions and cut-out|29

## ANSWERS FOR <br> RAILWAY APPLICATIONS

ARTECHE auxiliary relays are designed to guarantee the best features and complete security even in the hardest working environment.

The design, durability and quality of the different alternatives that ARTECHE relays can offer (FF range and standard range), make them suitable for high responsibility controls in the railway sector, highlighting:


## ROLLING STOCK:

```
> Boarding doors locking.
> Brake circuit command.
> Security loop.
> Pantograph control.
> Lighting and air conditioned systems operation.
> Traction system.
> Brake systems.
```


## INTERLOCKING AND SIGNALLING:

Interface between infrastructure and rolling stock:
> ASFA systems.
> RTMC systems.
> RTMS systems.
> CBTC systems.
> ETCS systems.
> ATO/ATP/ATS/APR... systems.

## GENERAL

## CHARACTERISTICS

The main features of ARTECHE's auxiliary relays are the followings:
> Security contacts, WELD NO TRANSFER (EN 50205 Standard).
> Forcibly guided contacts, WELD NO TRANSFER (EN 50205 / IEC 61810-3):

- Type A: Relay in which all contacts are mechanically linked.
- Type B: Relay containing contacts that are mechanically linke to each other as well as contacts that are not mechanically linked.
> Capable to withstand vibrations and seismic conditions (EN 61373 Standard).
> Capable to operate under low duty loads, activate digital inputs, and operate without any load.
> Security applications: they can be used in applications up to SIL 4.
> Wide range of auxiliary voltage levels (Vdc and Vac).
) Sturdy design.
> Self-cleaning contacts.
> Designed to allow continuous operation even in high ambient temperature, within the whole voltage range.
> High level of electrical insulation between input and output circuits.
> High degree of protection (IP40), with transparent cover, making them suitable for use in salty and tropical atmospheres.
> Capable to work under ambients with relative humidity around $100 \%$.
> Simplicity of installation (plug-in relays in a wide range of sockets with different installation configurations).
> No need of maintenance after installation.
In addition, the different number of alternatives that are offered when the equipment is selected, both technically (increase of the breaking capacity by serial contacts or by the magnetic blow out, high speed operation of the output contacts, possibility of adding different options to the relay) and in the assembly method (front, rear or flush mounted sockets, with screws or fastons) must be considered.


## RAILWAY APPLICABLE STANDARDS

> EN 50155 (IEC 60571 equivalent). Railway applications - Electronic equipment used on rolling stock.
IEC 61373. Railway applications - Shock and vibration tests.
> EN 45545-2. Railway applications - Fire behavior of materials and components.
> RIA 12. General specification for protection of traction and rolling stock electronic equipment from transients and surges in DC control systems.
> EN 50205 / EN 61810-3. Relays with forcibly guided (mechanically linked) contacts. WELD NO TRANSFER.


## GENERAL STANDARDS

[^0]
## INSTANTANEOUS RELAYS

> From 2 to 8 contacts with different options available (push to test button, led, mechanical indication of contact position).
> Variants for coil overvoltage protection.
> Operating time $<20 \mathrm{~ms}$.

## TIMER RELAYS

) Up to 10 different functions in the same relay.
) Wide timing range, from 30 ms up to 99 h .
) From 2 to 8 contacts.
> Possibility to combine instantaneous contacts and timer contacts in the same relay.
> Reduction of references for maintenance, as the same reference can cover multiple applications.
> Variant for drop-out timing with one single input.

## CONTACTOR RELAYS

> Instantaneous relays incorporating magnetic blow-out to increase the breaking capacity of the normally open (NO) contacts.
> Range from 2 to 8 contacts and variants for coil overvoltage protection.

## LATCHING RELAYS

> Relays with two stable positions maintained by a permanent magnet, which prevents intermediate positions and assures reliability.
> Range from 3 to 8 contacts, including visual indication of the position of the contacts, and variants for coil overvoltage protection.
> No consumption in permanence, only during the change of contact position.

## IMPULSE RELAYS

> Similar to latching relay with a single input. While powered, a trigger signal changes contact position.

## SOCKETS AND ACCESSORIES

> Different types of sockets allowing DIN rail, wall or panel / flush mounting, as well as front or rear connection.
> Variants for screw, faston and spring clamp connectors.
> Retaining clips of different types available.
> Optional keying pins to ensure only the correct type of relay can be plugged in a certain socket.


RAILWAY APPLICATIONS

| MODEL | ROLLING STOCK | SIGNALING | CONTACTS | FORCIBLY GUIDED CONTACTS WELD NO TRANSFER (EN 50205 / iEC 61810-3) |
| :---: | :---: | :---: | :---: | :---: |
| Instantaneous |  |  |  |  |
| RD-2SY FF | - | - | 2 CO | Type A |
| RF-4SY FF | - | - | 4 CO | Type A |
| RJ-8SY FF | - | - | 8 CO | Type A |
| RD-2SYDI FF / RD-2SYV FF | - | - | 2 CO | Type A |
| RF-4SYDI FF / RF-4SYV FF | - | - | 4 CO | Type A |
| RJ-8SYDI FF / RJ-8SYV FF | - | - | 8 CO | Type A |
| Timers |  |  |  |  |
| TDF-2 FF | - | - | 2 CO | Type A |
| TDF-4 FF | - | - | 4 CO | Type A |
| TDF-4DO FF | - | - | 4 CO | Type A |
| TDF-22 FF | - | - | $\begin{gathered} 4 \text { CO } \\ (2 \text { inst. }+2 \text { timed }) \end{gathered}$ | Type B |
| TDJ-8 FF | - | - | 8 CO | Type A |
| TDJ-44 FF | - | - | $\begin{gathered} 8 \text { CO } \\ (4 \text { inst. }+4 \text { timed }) \end{gathered}$ | Type B |
| Latching |  |  |  |  |
| BF-3 FF | - | - | 3 CO |  |
| BF-4 FF | - | - | 4 CO |  |
| BJ-8 FF | - | $\bullet$ | 8 CO |  |
| BF-3BB FF | - | - | 3 CO |  |
| BF-4BB FF | - | - | 4 CO |  |
| BJ-8BB FF | - | - | 8 CO |  |
| Contactors |  |  |  |  |
| CD-2 FF | - | - |  |  |
| CF-4 FF | - | - | $\left(\begin{array}{c}2 \mathrm{CO} \\ (4 \mathrm{NO} \text { Contactor }+4 \mathrm{NC} \text { Relay) })\end{array}\right.$ |  |
| CJ-8 FF | - | - | $\begin{gathered} 4 \mathrm{CO} \\ (8 \mathrm{NO} \text { Contactor }+8 \mathrm{NC} \text { Relay) } \end{gathered}$ |  |
| Impulse |  |  |  |  |
| RBF-2 FF | - | - | 2 CO | Type A |
| RBF-4 FF | - | - | 4 CO | Type A |

Type A contacts: All contacts are mechanically linked.
Type B contacts: Instantaneous contacts mechanically linked. Timer contacts mechanically linked. Instantaneous and Timer contacts not mechanically linked between them.

All Type A relays are marked indicating their condition.

## arteche

## TECHNICAL FEATURES PER MODEL



World-class range

## INSTANTANEOUS RELAYS

| Model |
| :--- | :--- | :--- | :--- |

## INSTANTANEOUS RELAYS WITH COIL OVERVOLTAGE PROTECTION

Model | RD-2SYDI OP FF |
| :---: |
| RD-2SYV OP FF |

Applications
Construction characteristics
Contacts no.

General purpose and safety applications. With coil overvoltage suppression protecting the output contacts of the equipment energizing the coil of the relay, by adding a freewheeling diode ( DI ) or varistor (V).

Contacts no.

2 Changeover
4 Changeover
8 Changeover

Connections

## Options

Weight (g)
Dimensions (mm)


With OP options
125
(A) $22.5 \times(B) 50.4 \times(C) 72$ (D short)


With OP options / Push-to-test button included
250
(A) $42.5 \times$ (B) $50.4 \times(C) 72$
(F short)


500
(A) $82.5 \times(\mathrm{B}) 50.4 \times(\mathrm{C}) 72$
( J short)

Coil characteristics
Standard voltages ${ }^{(1)}$
24, 48, 72, 96, $110 \mathrm{Vdc} / 24,48,63,5,110,127,230 \mathrm{Vac}(50-60 \mathrm{~Hz})$

| Voltage range |  |
| :--- | ---: |
| Pick-up / release voltage |  |
| Inductance at $U_{\text {nom }}:$ | Energized |
|  | Released |


| $+25 \%-30 \% U_{N}$ |  |  |
| :---: | :---: | :---: |
| 10.5 ms | See picn-up/release voltage-temperature curves |  |
| 8.2 ms | 16.2 ms | 18.5 ms |
| 2.6 W | 10.8 ms | 9.3 ms |
| 2.9 W | 7.5 W |  |

Pick-up
$<20 \mathrm{~ms}$
V Series: <25 ms
DI Series, VAC or with LED: <50 ms
Contacts


[^1]
## TIMER RELAYS (I)

| Model | TDF-2 OP FF | TDF-4 OP FF | TDF- | OP FF |
| :---: | :---: | :---: | :---: | :---: |
| Applications | General purpose and safe | ations. 10 function timin | il overvo |  |
| Construction characteristics |  |  |  |  |
| Timing Contacts no. | 2 Changeover | 4 Changeover | 2 Changeover |  |
| Instantaneous contact no. | O Changeover | O Changeover | 2 Changeover |  |
|  |  | DEPENDENT CONTROL INDEPENDENT CONTROL | DEPENDENT CONTROL | INDEPEND CONTROL |
| Connections |  |  |  |  |
| Options (With OP options) | dependent control S 2-1 Supply Voltage C A1-1 Control Voltage independent control $\begin{array}{ll}\text { S. } \\ \text { C Al-B1 } & \text { Supply Voltage } \\ \text { Control Voltage }\end{array}$ | DEPENDENT CONTROL $\begin{array}{ll}\text { S 1-2 } & \text { Supply Voltage } \\ \text { C B1-2 } & \text { Control Voltage }\end{array}$ INDEPENDENT CONTROL $\begin{array}{lll}\text { S 1-2 } & \text { Supply Voltage } \\ \text { C B1-A1 } & \text { Control Voltage }\end{array}$ C B1-A1 Control Voltage | DEPENDENT CONTROL <br> S 1-2 Supply Voltage <br> C B1-2 Control Voltage |  |
|  |  |  | INDEPENDS 1-2 <br> C 1 - С B1-A |  |
| Weight (g) | 265 |  |  |  |
| Dimensions (mm) | (A) $42.5 \times$ (B) $50.4 \times$ (C) 96.6 (F large type) |  |  |  |
| Coil characteristics |  |  |  |  |
| Standard voltages ${ }^{(1)}$ | 24, 48, 72, 96, 110, $230 \mathrm{Vdc} / \mathrm{Vac}(50-60 \mathrm{~Hz}$ ) |  |  |  |
| Voltage range | +25\%-30\% U ${ }_{N}$ |  |  |  |
| Pick-up / release voltage | See power supply-temperature charts for timer relays |  |  |  |
| Inductance at $\mathrm{U}_{\text {nom: }}$ : $\begin{array}{r}\text { Energized } \\ \text { Released }\end{array}$ | 10.5 ms <br> 8.2 ms | $\begin{aligned} & 16.2 \mathrm{~ms} \\ & 10.8 \mathrm{~ms} \end{aligned}$ | $\begin{aligned} & 16.2 \mathrm{~ms} \\ & 10.8 \mathrm{~ms} \end{aligned}$ |  |
| Average consumption in permanence ( $U_{N}$ ) | 3.1 W | 4.5 W | 6.1 W |  |
| Average consumption during time delay (coil not energized) $\left(U_{N}\right)$ | 0.5 W |  |  |  |
| Operating time |  |  |  |  |
| Time range | Between 0.03 s to 99 h |  |  |  |
| Pick-up time | $<23 \mathrm{~ms}$ |  |  |  |
| Drop-out time | $<40 \mathrm{~ms}$ |  |  |  |
| Contacts |  |  |  |  |
| Contact type | 2 Changeover | 4 Changeover |  |  |
| Contact material | AgNi |  |  |  |
| Contacts resistance ${ }^{(2)}$ | $\leq 15 \mathrm{~m} \Omega$ |  |  |  |
| Distance between contacts | 1.2 mm |  |  |  |
| Permanent current | 10 A |  |  |  |
| Instantaneous current | 30 A during $1 \mathrm{~s} / 80 \mathrm{~A}$ during $200 \mathrm{~ms} / 200 \mathrm{~A}$ during 10 ms |  |  |  |
| Minimum current / voltage | $12 \mathrm{Vdc}, 10 \mathrm{~mA}$ |  |  |  |
| Max. making capacity | $40 \mathrm{~A}, 0.5 \mathrm{~s}, 110 \mathrm{Vdc} / 30 \mathrm{~A}, 1 \mathrm{~s}, 36 \mathrm{Vdc}, 30,000$ operations ( $1 \mathrm{op} / 15 \mathrm{~s}$ ) |  |  |  |
| Breaking capacity | See breaking capacity curves (Contact gap $=1.2 \mathrm{~mm}$ ) |  |  |  |
| Max. breaking capacity | See value for 50,000 operations |  |  |  |
| $\mathrm{U}_{\text {max }}$ opened contact | $250 \mathrm{Vdc} / 400 \mathrm{Vac}$ |  |  |  |
| General data |  |  |  |  |
| Mechanical endurance | $10^{7}$ operations |  |  |  |
| Dielectric strength | 2 kV (between independent circuits) / 1.5 kV (between open contacts) |  |  |  |
| Impulse voltage | 5 kV (between independent circuits) / 2.5 kV (between open contacts) |  |  |  |
| Insulation resistance | $>1,000 \mathrm{M} \Omega$ |  |  |  |
| Operating temperature | Up to 125 Vdc: $-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} / 230 \mathrm{Vdc}:-40^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$ |  |  |  |
| Storage temperature | $-50^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$ |  |  |  |
| Max. operating humidity | 95\% |  |  |  |
| Operating altitude ${ }^{(3)}$ | <2,000 m |  |  |  |

${ }^{(1)}$ Other voltage upon request
(2) Guarantee data for relays just manufactured
${ }^{(3)}$ Ask for higher altitudes

TIMER RELAYS (II)
Model TDJ-8 OP FF TDF-4DO OP FF

Applications
General purpose and safety applications 10 function timing with coil overvoltage protection


Average consumption during time delay
(coil not energized) $\left(\mathrm{U}_{\mathrm{N}}\right)$
Sd -a Supply Voltage $\mathbf{S} \mathrm{d}-\mathrm{a}$ Supply Voltage Sd d a Supply Voltage Sd d-a Supply Voltage
Selectable drop out timing with one single input (no additional supply req.) and coil overvoltage protection

Operating time
Fixed, defined during purchase order: between 0 and $1,000 \mathrm{~ms}^{(4)}$
Fixed, selectable by front potentiometer:
Time range
Between 0.03 s to 99 h $0-500 \mathrm{~ms} / 100-600 \mathrm{~ms} / 200-700 \mathrm{~ms} / 300-$ 800 ms (limit of coil voltage 72 Vdc )/400$900 \mathrm{~ms} / 500-1,000 \mathrm{~ms} /$ and intermediate combinations (with steps of 500 ms )


## LATCHING RELAYS



[^2]
## LATCHING RELAYS WITH COIL OVERVOLTAGE PROTECTION



## CONTACTORS RELAYS

| Model | CD-2 FF | CF-4 FF | CJ-8 FF |
| :---: | :---: | :---: | :---: |
| Applications | General purpose contactors with coil overvoltage protection. <br> Enhanced breaking capacity NO contacts with magnetic arc blowout and standard capacity NC contacts ${ }^{(3)}$. Outer contacts are suitable for switching low currents ( 10 mA ). |  |  |
| Construction characteristics |  |  |  |
| Contacts no. | 2 Changeover polarized | 4 Changeover polarized | 8 Changeover polarized |
| Connections | $3 \longdiv { 5 - }$ $4 \longdiv { 8 + }$ $4+$ $\frac{7+}{8+}$ |  |  |
| Weight (g) | 129 | 254 | 505 |
| Dimensions (mm) | (A) $22.5 \times$ (B) $50.4 \times(C) 72$ <br> (D short type) | (A) $42.5 \times(B) 50.4 \times(C) 72$ (F short type) | (A) $82.5 \times(B) 50.4 \times(C) 72$ <br> (J short type) |
| Coil characteristics |  |  |  |
| Standard voltages ${ }^{(1)}$ | 24, 48, 72, 96, $110 \mathrm{Vdc} / 24,48,63,5,110,230 \mathrm{Vac}(50-60 \mathrm{~Hz}$ ) |  |  |
| Voltage range | $+25 \%-30 \% U_{N}$ |  |  |
| Inductance at $\mathrm{U}_{\text {nom }}$ : $\quad \begin{array}{r}\text { Energized } \\ \text { Released }\end{array}$ | $\begin{gathered} 10.5 \mathrm{~ms} \\ 8.2 \mathrm{~ms} \end{gathered}$ | $\begin{gathered} 18.5 \mathrm{~ms} \\ 9.3 \mathrm{~ms} \end{gathered}$ | 16.2 ms 10.8 ms |
| Pick-up / release voltage | See pick-up / release voltage-temperature curves |  |  |
| Average consumption in permanence ( $U_{N}$ ) | 2.6 W | 3.9 W | 6 W |
| Operating time |  |  |  |
| Pick-up time | $<20 \mathrm{~ms}$ |  |  |
| Drop-out time | 50 ms |  |  |
| Contacts |  |  |  |
| Contact material | AgNi |  |  |
| Distance between contacts | 1.2 mm |  |  |
| Permanent current | 10 A |  |  |
| Instantaneous current | 30 A during $1 \mathrm{~s} / 80 \mathrm{~A}$ during $200 \mathrm{~ms} / 200 \mathrm{~A}$ during 10 ms |  |  |
| Minimum current / voltage | $12 \mathrm{Vdc} / 10 \mathrm{~mA} \quad$Outer contacts $3-11 / 7 \mathrm{\&}$ <br> $6-14 / 10=12 \mathrm{Vdc} / 10 \mathrm{~mA}$ <br> $8-80 / 81=12 \mathrm{Vdc} / 10 \mathrm{~mA}$ |  |  |
| Max. making capacity | $40 \mathrm{~A}, 0,5 \mathrm{~s}, 110 \mathrm{Vdc} / 30 \mathrm{~A}, 1 \mathrm{~s}, 36 \mathrm{Vdc}, 30,000$ operations (1 op / 15 s ) |  |  |
| Breaking capacity | See breaking capacity curves <br> (Contactor curve for the NO contacts, standard 1.2 mm contact gap curves for NC contacts) |  |  |
| Max. breaking capacity | $125 \mathrm{Vdc}-40 \mathrm{~ms}$ : Contacts NO $6 \mathrm{Amp} .10^{5}$ operations -15 Amp .100 operations; Contacts NC 0.52 Amp. 50,000 operations |  |  |
| $\mathrm{U}_{\text {max }}$ opened contact | $250 \mathrm{Vdc} / 400 \mathrm{Vac}$ |  |  |
| General data |  |  |  |
| Mechanical endurance | $10^{7}$ operations |  |  |
| Dielectric strength | 2 kV (between independent circuits) / 1.5 kV (between open contacts) |  |  |
| Impulse voltage | 5 kV (between independent circuits) / 2.5 kV (between open contacts) |  |  |
| Insulation resistance | $>1,000 \mathrm{M} \Omega$ |  |  |
| Operating temperature | $-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$ |  |  |
| Storage temperature | $-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$ |  |  |
| Max. operating humidity | 95\% |  |  |
| Operating altitude ${ }^{(3)}$ | <2,000 m |  |  |

[^3]One NO contact


Two NO contacts

+ Vdc


The load is disconected when the relay is de-energized

One NC contact

$+\mathrm{Vdc}$


Two NC contacts in series


The load is disconected when the relay is energized


## IMPULSE RELAY



Applications
Construction characteristics
Contacts no.

Connections

Operation Chart
t on: Turn on time $<=30 \mathrm{~ms}$.
t bp: Minimum time between pulses, 30 ms
$\mathrm{bp}(1)>=30 \mathrm{~ms}$
$\mathrm{tbp}(2)<30 \mathrm{~ms}$
t p: Trigger minimum length, 3 ms (max. 99 hours)

## Weight (g)

Dimensions (mm)
Coil characteristics
Standard voltages ${ }^{(1)}$
Voltage range

| Pick-up / release voltage |  |
| :--- | ---: |
| Inductance at $U_{\text {nom }}$ : | Energized |
|  | Released |

## Average consumption when coil not energized $\left(U_{N}\right)$

Operating time
Pick-up time
Latching relay with a single input and coil overvoltage protection. The state of the contacts changes with each input pulse. Auxiliary supply is needed.


265
(A) $42.5 \times$ (B) $50.4 \times$ (C) 96.6 (F large type)

24, 48, 72, 96, 110, $230 \mathrm{Vdc} / \mathrm{Vac}(50-60 \mathrm{~Hz})$ $+25 \%-30 \% U_{N}$
See power supply-temperature charts for impulse relay
$10.5 \mathrm{~ms} \quad 16.2 \mathrm{~ms}$
10.8 ms
8.2 ms
3.1 W
4.5 W
0.5 W
$<23 \mathrm{~ms}$
Drop-out time <40 ms
Contacts

| Contact material | AgNi |
| :---: | :---: |
| Contacts resistance ${ }^{(2)}$ | $\leq 15 \mathrm{~m} \Omega$ |
| Distance between contacts | 1.2 mm |
| Permanent current | 10 A |
| Instantaneous current | 30 A during $1 \mathrm{~s} / 80 \mathrm{~A}$ during $200 \mathrm{~ms} / 200 \mathrm{~A}$ during 10 ms |
| Minimum current / voltage | $12 \mathrm{Vdc}, 10 \mathrm{~mA}$ |
| Max. making capacity | $40 \mathrm{~A}, 0,5 \mathrm{~s}, 110 \mathrm{Vdc} / 30 \mathrm{~A}, 1 \mathrm{~s}, 36 \mathrm{Vdc}, 30,000$ operations (1 op / 15 s ) |
| Breaking capacity | See breaking capacity curves (Contact gap $=1.2 \mathrm{~mm}$ ) |
| Max. breaking capacity | See value for 50,000 operations |
| $U_{\text {max }}$ opened contact | $250 \mathrm{Vdc} / 400 \mathrm{Vac}$ |
| General data |  |
| Mechanical endurance | $10^{7}$ operations |
| Dielectric strength | 2 kV (between independent circuits) / 1.5 kV (between open contacts) |
| Impulse voltage | 5 kV (between independent circuits) / 2.5 kV (between open contacts) |
| Insulation resistance | $>1,000 \mathrm{M} \Omega$ |
| Operating temperature | Up to 125 Vdc: $-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} / 230 \mathrm{Vdc}: ~-40^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$ |
| Storage temperature | $-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$ |
| Max. operating humidity | 95\% |
| Operating altitude ${ }^{(3)}$ | <2,000 m |

${ }^{(1)}$ Other voltage upon request
${ }^{(2)}$ Guarantee data for relays just manufactured
${ }^{(3)}$ Ask for higher altitudes
arteche
BREAKING CAPACITY


## BREAKING CAPACITY

The breaking capacity is a critical parameter on the design and the applications of the relays. Its mechanical life could be considerably reduced, depending on the value of the load (especially with heavy duty loads), the number of operations and the environmental conditions in which the relay is operating.

In any configuration, ARTECHE's auxiliary relays have a high breaking capacity values. These limits are showed in the table below, in terms of power and current values. In all the cases, these relays guarantee a right performance during 50,000 operations.

Likewise, the values showed in the following charts have been obtained in standard conditions in the laboratory, and they could be different in real conditions. In any case, the possibility of connecting serial contacts or a bigger distance between contacts makes these values to be considerably increased.

## INSTANTANEOUS, LATCHING, TIMERS AND IMPULSE RELAYS

## 24 Vdc voltage <br> Different load configurations.

## Resistive load:

> $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

Highly inductive load:
> $L / R=40 \mathrm{~ms}$.


|  |  | 0 ms |  | 20 ms |  | 40 ms |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vdc | Contact configuration | P(W) | I(A) | $P(W)$ | I(A) | $P(W)$ | I(A) |
|  | Contact gap $=1.8$ mm | 500 | 20.83 | 370 | 15.42 | 250 | 10.42 |
|  | Contact gap $=1.2 \mathrm{~mm}$ | 450 | 18.75 | 300 | 12.50 | 210 | 8.75 |

## 110 Vdc voltage

Different load configurations.

## Resistive load:

> $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

## Highly inductive load:

> $L / R=40 \mathrm{~ms}$.

$\rightarrow$ Contact gap $=1.8 \mathrm{~mm}$
$\rightarrow$ Contact gap= 1.2 mm
$* 2$ contacts in series. Contact gap $=1.8 \mathrm{~mm}$
-2 contacts in series. Contact gap $=1.2 \mathrm{~mm}$

|  |  | 0 ms |  | 20 ms |  | 40 ms |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vdc | Contact configuration | P(W) | I(A) | P(W) | I(A) | P(W) | I(A) |
| 110 | Contact gap $=1.8 \mathrm{~mm}$ | 170 | 1.55 | 140 | 1.27 | 90 | 0.82 |
|  | Contact gap $=1.2 \mathrm{~mm}$ | 125 | 1.14 | 100 | 0.91 | 65 | 0.59 |
|  | 2 contacts in series. Contact gap $=1.8 \mathrm{~mm}$ | 1360 | 12.36 | 1106 | 10.05 | 730 | 6.63 |
|  | 2 contacts in series. Contact gap $=1.2 \mathrm{~mm}$ | 874 | 7.95 | 742 | 6.74 | 452 | 4.11 |

## CONTACTORS

## 110 Vdc voltage

$$
\text { > L/R= } 40 \mathrm{~ms} .
$$



## HOW TO SELECT THE CURVE <br> OF MY RELAY

These charts show the breaking capacity values, either for resistive and highly inductive loads, in three voltage values of reference (ask for other voltage values). The charts show two different curves:
> Pink Curve: Breaking capacity for relays with a 1.8 mm contact gap.
>Blue Curve: Breaking capacity for relays with a 1.2 mm contact gap.
The distance between contacts is shown in the tables of technical data.

## HOW THE BREAKING CAPACITY CAN BE INCREASED

ARTECHE's auxiliary relays are power relays, designed specially to have a high breaking capacity. Thus, there are applications where the loads are so high that it is necessary to even increase the breaking capacity, keeping the reliability of the contacts of the auxiliary relays.

Thus, ARTECHE relays have the following alternatives and recommendations:
> Possibility of external connection of equipment (serial contacts) getting an important increase of breaking capacity in these equipment is shown, guaranteeing the right performance during a high number of operations.
> Include the magnetic blow-out option: This option is indicated for safety applications (back-up) where the load values are extremely high. The mechanical life of the relay is reduced, but it is able to open very high loads for a certain number of operations.

These values of high breaking capacity are represented in the following table, where the high capacity of the output contacts of ARTECHE's auxiliary relays is proved.

## RELEVANT CONSIDERATIONS FOR RELAY STORAGE AND OPERATION

Long term storage, without making any operation and without connecting any load to the contacts, may sometimes lead to contact resistance increase. In normal operation, the mechanical cleaning (produced by the wiping effect of one contact against the other) and electrical cleaning (produced by the electrical load passing through the contacts) will reduce the contact resistance to optimum levels maintaining a good contact resistance all over the lifecycle of the relay.

Therefore, it is advisable to switch the working load several times before putting the relay into operation, so that the contacts are mechanically and electrically cleaned. If an increased contact resistance is observed, it is recommendable to perform several switching operations with a load of $1 \mathrm{~A} / 24 \mathrm{Vdc}$, thus providing an effective electrical cleaning which will reduce the contact resistance to optimum levels.

Similarly, switching very low loads and/or infrequent relay operation together with environmental agents may increase contact resistance. If issues arise when the relay is operating under this scenario, please contact Arteche for further asistance.

## arteche

$$
\begin{aligned}
& \text { PICK UP VOLTAGE/RELEASE } \\
& \text { VOLTAGE-TEMPERATURE } \\
& \text { CHARTS }
\end{aligned}
$$



## INSTANTANEOUS RELAYS AND CONTACTORS

Variability of operative voltage range against temperature for the instantaneous auxiliary relays.

## INSTANTANEOUS RELAYS WITH AND WITHOUT COIL OVERVOLTAGE PROTECTION AND CONTACTORS

## Operative range against ambient temperature



- Upper limit of the pick-up voltage

Lower limit of the Pick-up voltage
Lower limit of the Drop-out voltage
Operative range of the coil voltage

## LATCHING RELAYS

Variability of operative voltage range against temperature for the instantaneous auxiliary relays.

GENERAL PURPOSE LATCHING RELAYS AND LATCHING RELAYS WITH COIL OVERVOLTAGE PROTECTION

## Operative range against ambient temperature



## arteche

## TIMER RELAYS

## AND IMPULSE RELAY

The following curve shows the variability of operative voltage range against temperature for the time-lag relays.

## TIMER AND IMPULSE RELAYS

## Operative range against ambient temperature



U Upper limit of the pick-up voltage
Lower limit of the Pick-up voltage
Lower limit of the Drop-out voltage
Operative range of the coil voltage

## MODEL SELECTION


*Mandatory option
${ }^{(1)}$ Option available on relays with coil overvoltage protection

## MODEL SELECTION


*Mandatory option
${ }^{(1)}$ Option available on relays with coil overvolatge protection


## MODEL SELECTION

| Timers | Type | Aux. Supply |  |  | Options |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model Selection $>$ |  |  | OP | 0 |  | 0 | FF |
| General purpose range |  |  |  |  |  |  |  |
| Relay with 2 timer contacts | TDF-2 |  |  | O* | 0 | O* |  |
| Relay with 4 timer contacts | TDF-4 |  |  | O* | 0 | O* |  |
| Relay with 2 instantaneous contacts + 2 timer contacts | TDF-22 |  |  | O* | 0 | O* | $\begin{aligned} & \frac{2}{2} \\ & \stackrel{2}{2} \end{aligned}$ |
| Relay with 8 timer contacts | TDJ-8 |  |  | O* | 0 | O* | O |
| Relay with 4 instantaneous contacts + 4 timer contacts | TDJ-44 |  |  | O* | 0 | O* | - |
| Aux. Supply |  |  |  |  |  |  |  |
| Indicate voltage level (ex.: $24 \mathrm{Vdc} / \mathrm{Vac}$ ) |  |  |  |  |  |  |  |
| Options |  |  |  |  |  |  |  |
|  | Dependent Standard |  |  |  | 0 |  |  |
|  |  | $24 \mathrm{Vdc} \cdot \mathrm{Vac}$ |  |  | 1 |  |  |
|  |  | $48 \mathrm{Vdc} \cdot \mathrm{Vac}$ |  |  | 2 |  |  |
|  |  | $60 \mathrm{Vdc} \cdot \mathrm{Vac}$ |  |  | 3 |  |  |
| Command sign voltage | Different voltages for the | $72 \mathrm{Vdc} \cdot \mathrm{Vac}$ |  |  | 4 |  |  |
|  | command signal and the | $96 \mathrm{Vdc} \cdot \mathrm{Vac}$ |  |  | 5 |  |  |
|  |  | $110 \mathrm{Vdc} \cdot \mathrm{Vac}$ |  |  | 6 |  |  |
|  |  | $125 \mathrm{Vdc} \cdot \mathrm{Vac}$ |  |  | 7 |  |  |
|  |  | $220 \mathrm{Vdc} \cdot \mathrm{Vac}$ |  |  | 8 |  |  |

"Mandatory option

| Timers <br> (pick up time) |
| :--- |
| Model selection |
| Contactor type |
| Relay with 4 timer contacts |
| Timer |
| TDF-4DO |

## arteche

## MODEL SELECTION


*Mandatory option

## DIMENSIONS OF THE RELAYS

Dimensions: $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$


## RETAINING CLIPS

The use of retaining clips should be mandatory on rolling stocks to prevent the relay to get out of its socket by vibration.
The best choice thereof depends on the combination of relay and socket.

| RETAINING CLIPS | OP SOCKET | RELATED PLUGGED RELAY |
| :---: | :---: | :---: |
| EO | Universal ( $D$ and $F$ sized sockets require 2 units; $J$ sized sockets | Universal <br> RD; RF; RJ; (Bag of 20 units) |
|  | require 4 units) | TDF; TDJ $\begin{gathered}\text { Universal } \\ \text { (Bag of } 100 \text { units) }\end{gathered}$ |
| E41 | DN DE IP FF, DN DE 2C IP FF, D DE CL IP2O FF | RD OP FF |
| E50 | DN TR OP FF, DN TR 2C OP FF | RD OP FF |
| E40 | FN DE IP FF, FN DE 2C IP FF, F DE CL IP20 FF | RF OP FF |
| E43 | FN DE IP FF, FN DE 2C IP FF F DE CL IP20 FF | TDF OP; RBF FF |
| E42 | FN TR OP FF, FN TR 2C OP FF | RF OP FF |
| E44 | FN TR OP FF, FN TR 2C OP FF | TDF OP; RBF FF |
| E31 | FN DE IP FF, FN DE 2C IP FF F DE CL FF | BF FF |
| E21 | FN TR OP FF, FN TR 2C OP FF | BF FF |
| E45 | JN DE IP FF, JN DE 2CIP FF, J DE CL IP20 FF | RJ OP FF |
| E47 | JN DE IP FF, JN DE 2C IP FF J DE CL IP20 FF | TDJ OP FF |
| E46 | JN TR OP FF, JN TR 2C OP FF | RJ OP FF |
| E48 | JN TR OP FF, JN TR 2C OP FF | TDJ OP FF |
| E29 | JN DE IP FF, JN DE 2C IP FF, J DE CL IP20 FF | BJ; UJ FF |
| E27 | JN TR OP FF, JN TR 2C OP FF | BJ; UJ FF |
| OTHER ACCESSORIES |  |  |
| Securit | ins for RD; RF; RJ; TDF; TDJ relays | (bag of 100 units) |

## SOCKETS, DIMENSIONS AND CUT-OUT



${ }^{(1)}$ The sockets can be installed on the TS35 DIN rail (symmetrical $35 \mathrm{~mm} \times 7.5 \mathrm{~mm}, 1 \mathrm{~mm}$ thick according to EN 50022, BS 5584, DIN 46277-3).
${ }^{(2)}$ Minimum distance between sockets will depend on type of relay and sockets. Please request sockets user manual for more detailed information.


Moving together


[^0]:    > EN IEC 61810: Electromechanical all-or-nothing relays.
    > IEC 61812: Specified time relays for industrial use.
    > IEC 60947: Low-voltage switchgear and controlgear.
    > EN 60077 Series. Rolling stock equipment.

    - Part 1: General conditions in service and general terms.
    -Part 2: Electrotechnical components.

[^1]:    (1) Other voltage upon request
    ${ }^{(2)}$ Guarantee data for relays just manufactured
    ${ }^{(3)}$ Ask for higher altitudes

[^2]:    ${ }^{(1)}$ Other voltage upon request
    ${ }^{(2)}$ Ask for higher altitudes
    ${ }^{(3)}$ Guarantee data for relays just manufactured

[^3]:    ${ }^{\text {1) }}$ Other voltage upon request
    ${ }^{(2)}$ Higher altitudes upon request

